# GENETICS OF SILK COCOON COLOUR

M.Sc. 4<sup>th</sup> Semester

#### **Contents**

- Introduction
- Genetic analysis of silk cocoon colour
- Relationship between blood colour and cocoon colour
- Linkage group of cocoon colour
- Discovery of other cocoon colour gene
- Morphological traits and genes for various cocoon colour

Dr. Debnirmalya Gangopadhyay Assistant Professor, Department of Sericulture, Raiganj University, Raiganj

## Introduction

- The unique silk cocoon colour and its elegance has attracted the attention of many silkworm breeders/geneticists.
- Bombyx mandarina (possessing pale greenish-yellow cocoons) is the ancestor of modern domesticated Bombyx mori races.
- On the basis of cocoon colour and chemical nature of pigments, silkworm races may be broadly divided into three categories-

| S1. | Type of cocoon colour | Type of pigments             |
|-----|-----------------------|------------------------------|
| No. |                       |                              |
| 1.  | White colour races    | Absence of colour            |
| 2.  | Yellow colour races   | Carotenoids and Xanthophylls |
| 3.  | Green colour races    | Flavonoids                   |

N.B. Other intermediate colour forms are pink, light green, light yellow, sooty white etc.

### Colour variation at different cocoon layers

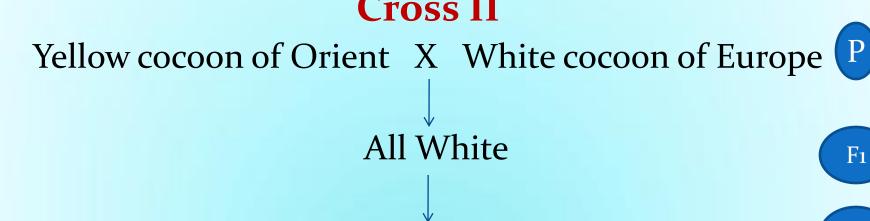
- Cocoon colour may vary at various layers of the cocoon (outside layer is relatively dark than the inside layer).
- Pigmentation of silk filament is subjected to the differential and non-differential accumulation of pigments and its type in the silk gland.
- This differential accumulation of pigments has direct relation with the genotype of the silkworms.

| Region of the silk gland |            | Secretion   |                                 |
|--------------------------|------------|-------------|---------------------------------|
|                          |            | Substance   | Function                        |
|                          | Middle I   | Sericin I   | Most mucous                     |
|                          | Middle II  | Sericin II  | Secreted copiously              |
| Absorbs                  | Middle III | Sericin III | Adheres very closely to fibroin |
|                          | Posterior  | Fibroin     | Main fibrous substance of silk  |

Leaf pigments → Digestive canal → Blood → Silk gland

(Carotenoids/ Xanthophylls/ Flavonoids) (Differential absroption of pigments)

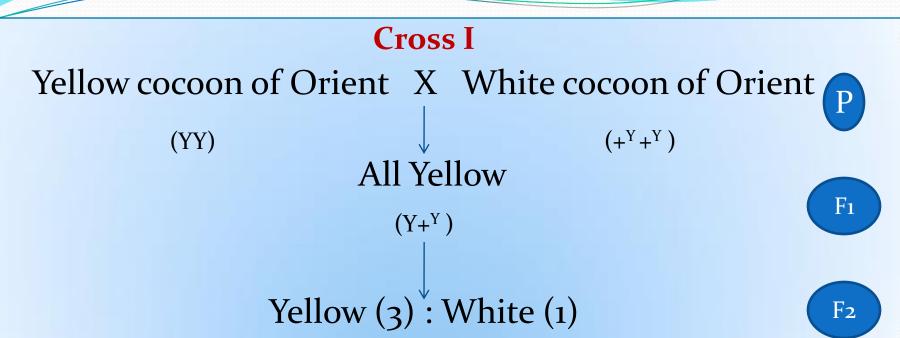
Silk fibre

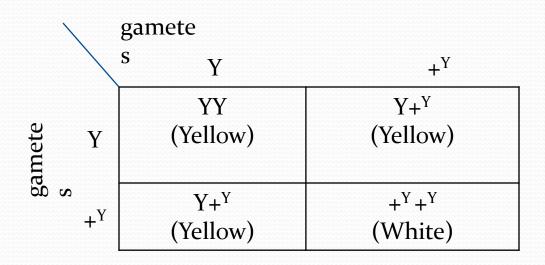

Pathway of pigments from leaf to silk fibre

# Genetic analysis

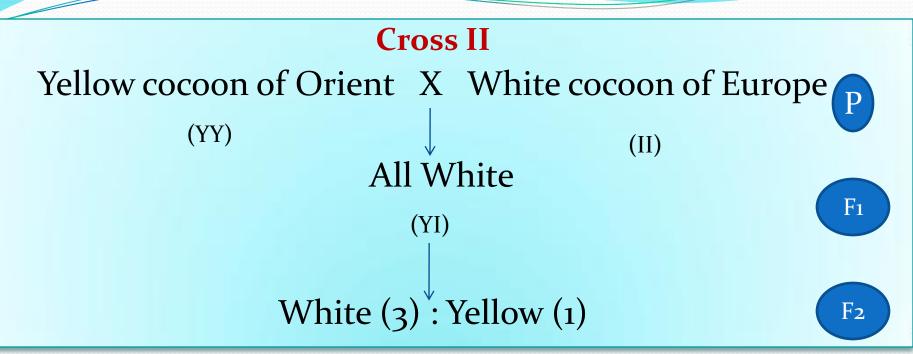
Early experiments of Countagne (1902) and Toyama (1906, 1912)

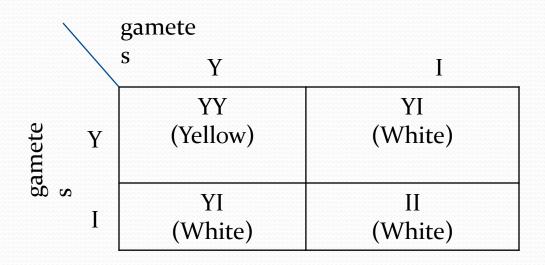





White (3): Yellow (1)


| Phenotype                           | Genotype                      | Relationship                                |
|-------------------------------------|-------------------------------|---------------------------------------------|
| Yellow cocoon colour                | YY                            | Y dominant to +Y                            |
| White cocoon colour (Oriental race) | + <sup>Y</sup> + <sup>Y</sup> | +Y recessive to Y or I (an inhibitory gene) |
| White cocoon colour (European race) | I I (an inhibitory gene)      | I dominant to Y or +Y                       |


# Genetic analysis-Interpretation





# Genetic analysis-Interpretation





| Relationship between blood colour and cocoon colour |               |           |  |
|-----------------------------------------------------|---------------|-----------|--|
| Blood colour                                        | Cocoon colour | Genotypes |  |
|                                                     | White         | Y + f + e |  |

White (recessive) Colourless White (dominant) Sooty plain white

Flesh inner white Pink inner white Golden yellow

YFC **+**<sup>y</sup>

YF + c

ΥI

YIs

YF Pk +c

#### Linkage groups of cocoon colour Cocoon colour inherited autosomally.

- Yellow colour is due to C allele (multiple allele in 12<sup>th</sup> linkage groups).
- Other linkage groups are 2, 9, 15, 16 etc.

#### Blood colour gene

Yellow

- Normal blood colour (+y recessive to yellow)
- Yellow blood (due to gene 'Y')
- Red blood (due to recessive gene 'rb')

#### Morphological traits and genes for various cocoon colour

| Morphological<br>trait | Gene<br>symbol        | Chromo<br>some<br>no. | Locus    | Function                                       |
|------------------------|-----------------------|-----------------------|----------|------------------------------------------------|
| Yellow blood           | Y                     | 2                     | 25.6     | Haemolymph is deep yellow                      |
| White blood            | <b>+</b> <sup>y</sup> | 2                     | 25.6     | Recessive to Y                                 |
| Yellow inhibitor       | I                     | 9                     | 0.2      | Completely supress yellow colouration of blood |
| <b>+</b> <sup>y</sup>  | Is                    | 9                     | 0.0      | Recessive to I                                 |
| Flesh                  | F                     | 6                     | 13.6     | Flesh colour when combined with YCF            |
| Pink                   | Pk                    | -                     | -        | When YCF Pk are in combination                 |
| Golden yellow          | С                     | 12                    | 14.2     | When combined with Y                           |
| White                  | + <sup>c</sup>        | 12                    | 14.0     | Does not allow pigmentation                    |
| Green                  | Ga, Gb, Gc            | 2, 15                 | 7.0, 7.8 | Pigment permeability gene, green colour cocoon |