A course on Linear algebra

Ripan Saha

Lecture 1
September 25, 2020

Reference Books

1. Kenneth M Hoffman, Ray Kunze; Linear algebra, Pearson; 2nd Edition.

Reference Books

1. Kenneth M Hoffman, Ray Kunze; Linear algebra, Pearson; 2nd Edition.
2. Friedberg, Insel, Spence; Linear Algebra, Pearson, 5th Edition.

The big picture of the course

This course will be divided into into parts.

The big picture of the course

This course will be divided into into parts.
A. The study of matrices.

The big picture of the course

This course will be divided into into parts.
A. The study of matrices.
B. Study of vector spaces and maps between vector spaces.

The big picture of the course

This course will be divided into into parts.
A. The study of matrices.
B. Study of vector spaces and maps between vector spaces.

We shall see that Part A and Part B are actually the two sides of the same coin.

Linear algebra?? What is that??

Well...that is what we aim to learn throughout the semester.

Linear algebra?? What is that??

Well...that is what we aim to learn throughout the semester.
But as the name suggests (roughly) it is a study of linear equations.

Linear algebra?? What is that??

Well...that is what we aim to learn throughout the semester.
But as the name suggests (roughly) it is a study of linear equations.

Linear algebra?? What is that??

Well...that is what we aim to learn throughout the semester.
But as the name suggests (roughly) it is a study of linear equations.

A linear equation is an equation of the form

$$
a_{1} x_{1}+a_{2} x_{2}+\cdots+a_{n} x_{n}=b
$$

where $a_{1}, \ldots, a_{n}, b \in \mathbb{R}$ and x_{1}, \ldots, x_{n} are variables. The scalars $a_{1}, a_{2}, \ldots, a_{n}$ are called the coefficients, and b is called the constant term of the equation

Linear algebra?? What is that??

Well...that is what we aim to learn throughout the semester.
But as the name suggests (roughly) it is a study of linear equations.

A linear equation is an equation of the form

$$
a_{1} x_{1}+a_{2} x_{2}+\cdots+a_{n} x_{n}=b
$$

where $a_{1}, \ldots, a_{n}, b \in \mathbb{R}$ and x_{1}, \ldots, x_{n} are variables. The scalars $a_{1}, a_{2}, \ldots, a_{n}$ are called the coefficients, and b is called the constant term of the equation

A linear equation (of n-variables) is called a homogenous equation if $b=0$ in the above equation.

One-variable linear equation

A one-variable linear equation is of the form $a x+b=0$. What is the solution of this equation.....hmmm....easy right ?

One-variable linear equation

A one-variable linear equation is of the form $a x+b=0$. What is the solution of this equation.....hmmm....easy right ?
i) If $a \neq 0$ then $x=-\frac{b}{a}$.

One-variable linear equation

A one-variable linear equation is of the form $a x+b=0$. What is the solution of this equation.....hmmm....easy right ?
i) If $a \neq 0$ then $x=-\frac{b}{a}$.
ii) If $a=0$, then there are two cases, either $b=0$ and any x is a solution (infinite number) or $b \neq 0$ and there is no solution (inconsistent equation).

Two variables linear equation

A two variables linear equation is of the form $a x+b y+c=0$.

Two variables linear equation

A two variables linear equation is of the form $a x+b y+c=0$.
A two variable linear equation represent a line in the plane.

Two variables linear equation

A two variables linear equation is of the form $a x+b y+c=0$.
A two variable linear equation represent a line in the plane.
Now what is the solution of this equation??...well...

Two variables linear equation

A two variables linear equation is of the form $a x+b y+c=0$.
A two variable linear equation represent a line in the plane.
Now what is the solution of this equation??...well...
i) If $b \neq 0$, we can rewrite the equation in the following form

$$
y=-\frac{a}{b} x-\frac{c}{b} .
$$

Thus, for every value of x there is a definite value of y. Thus, in this case there are infinite solutions.

Two variables linear equation

A two variables linear equation is of the form $a x+b y+c=0$.
A two variable linear equation represent a line in the plane.
Now what is the solution of this equation??...well...
i) If $b \neq 0$, we can rewrite the equation in the following form

$$
y=-\frac{a}{b} x-\frac{c}{b} .
$$

Thus, for every value of x there is a definite value of y. Thus, in this case there are infinite solutions.
ii) If $b=0$, then the given equation reduces to the previous one variable linear equation.

Two variables linear equation

A two variables linear equation is of the form $a x+b y+c=0$.
A two variable linear equation represent a line in the plane.
Now what is the solution of this equation??...well...
i) If $b \neq 0$, we can rewrite the equation in the following form

$$
y=-\frac{a}{b} x-\frac{c}{b} .
$$

Thus, for every value of x there is a definite value of y. Thus, in this case there are infinite solutions.
ii) If $b=0$, then the given equation reduces to the previous one variable linear equation.

Therefore, for two variables linear equation, there are possibly infinite, no or unique solution.

Solving two linear equations of two variables (Class X)

Solving two linear equations of two variables: Infinite solution case

solution.png

Solving two linear equations of two variables : No solution case

C_{1} and C_{2} are parallet.
No solution
solution.png

Solving two linear equations of two variables : Infinite solution case

L_{1} and L_{2} are different bot not parallel. Exactly one solution

solution.png

Three variables linear equation

A two variables linear equation is of the form $a x+b y+c z+d=0$.

Three variables linear equation

A two variables linear equation is of the form $a x+b y+c z+d=0$.
A two variables linear equation represent a plane in the space. If $d=0$ then the plane passes through the origin.

Three variables linear equation

A two variables linear equation is of the form $a x+b y+c z+d=0$.
A two variables linear equation represent a plane in the space. If $d=0$ then the plane passes through the origin.

Solutions for three variables linear equation

(a)Three planes intersect at a single point, representing a three-by-three system with a single solution. (b) Three planes intersect in a line, representing a three-by-three system with infinite solutions.

A system of linear equations

A system of linear equations is a set of m linear equations in the same n variables, where m and n are positive integers. We can write a system of linear equations as follows:

A system of linear equations

A system of linear equations is a set of m linear equations in the same n variables, where m and n are positive integers. We can write a system of linear equations as follows:

$$
\begin{gathered}
a_{11} x_{1}+a_{12} x_{2}+\cdots+a_{1 n} x_{n}=b_{1} \\
a_{21} x_{1}+a_{22} x_{2}+\cdots+a_{2 n} x_{n}=b_{2} \\
\vdots \\
a_{m 1} x_{1}+a_{m 2} x_{2}+\cdots+a_{m n} x_{n}=b_{m}
\end{gathered}
$$

where $a_{i j}$ denotes the coefficient of x_{j} in equation i.

Solution of a system of linear equations

A solution of a system of linear equations in the variables $x_{1}, x_{2}, \ldots, x_{n}$ is a vector $s=\left[\begin{array}{c}s_{1} \\ s_{2} \\ \vdots \\ s_{n}\end{array}\right]$ in \mathbb{R}^{n} such that every equation in the system is satisfied when each x_{i} is replaced by s_{i}.

