MEASURABLE FUNCTION

Prof. Ashoke Das

Department of mathematics

Raiganj University

- Why we need measurable functions?
- We ultimately intend to define an integration process modeled on Riemann integration which should be stronger than Riemann integration.
- Functions are the objects which we integrate,
- We need to define a special class of functions which we will like to integrate.

Definition 1.

- Let $f: D \to \mathbb{R}$ be a real valued function defined on a measurable subset D of \mathbb{R} .
- Then f is called Lebesgue measurable (more briefly, measurable) if one of the following holds.
- (i) $\{x \in D : f(x) > \alpha\}$ is measurable for any $\alpha \in \mathbb{R}$.
- (ii) $\{x \in D : f(x) \le \alpha\}$ is measurable for any $\alpha \in \mathbb{R}$.
- (iii) $\{x \in D : f(x) < \alpha\}$ is measurable for any $\alpha \in \mathbb{R}$.
- (iv) $\{x \in D : f(x) \ge \alpha\}$ is measurable for any $\alpha \in \mathbb{R}$.

- Consider the following simple observations:
- $(\alpha, \infty)^c = (-\infty, \alpha].$
- $(-\infty, \alpha)^c = [\alpha, \infty).$
- $(\alpha, \infty) = \bigcup_{n=1}^{\infty} [\alpha + \frac{1}{n}, \infty).$
- $[\alpha, \infty) = \bigcap_{n=1}^{n=1} (\alpha \frac{1}{n}, \infty).$
- Measurable sets form a σ -algebra,

- We could have considered extended real valued functions f,
- In addition to above mentioned properties, $f^{-1}\{\infty\}$ and $f^{-1}\{-\infty\}$ must also be measurable.

Theorem 1.

If f, g are measurable functions then so are cf, where $c \in \mathbb{R}$, f+g, f-g, f^2 , |f|, $\min\{f,g\}$, $\max\{f,g\}$.

- (i) If c = 0 then the result is obvious. Let $\alpha \in \mathbb{R}$ be given.
- If c > 0
- $\{x \in D : cf(x) > \alpha\} = \{x \in D : f(x) > \frac{\alpha}{c}\}.$
- If c < 0
- $\{x \in D : cf(x) > \alpha\} = \{x \in D : f(x) < \frac{\alpha}{c}\}.$

(iii) By (i) -g = (-1)g is measurable as g is measurable

• f is measurable $\Rightarrow f - g = f + (-g)$ is also measurable by (ii).

(iv) Let $\alpha \in \mathbb{R}$ be given.

- $\{x \in D : f^2(x) \ge \alpha\} = D \text{ if } \alpha \le 0$
- $\{x \in D : f^2(x) \ge \alpha\} =$
- $= \{x \in D : f(x) \ge \sqrt{\alpha}\} \cup \{x \in D : f(x) \le -\sqrt{\alpha}\} \text{ if } \alpha > 0.$
- $\Rightarrow f^2$ is also measurable.

(v) That fg is measurable follows from the above results and the fact that

• $fg = \frac{(f+g)^2 - (f-g)^2}{4}$.

Theorem 2.

- If $\{f_n\}_{n\in\mathbb{N}}$ is a sequence of measurable functions then
- $\sup_{n} f_n$, $\inf_{n} f_n$, $\lim_{n} \sup_{n} f_n$, $\lim_{n} \inf_{n} f_n$ and $\lim_{n} f_n$ (if exists) are all measurable.

- (i) $\{x \in D : \sup f_n(x) > \alpha\} =$
- $=\bigcup\{x\in D:\ f_n(x)>\alpha\}.$
- Since $\{x \in D : f_n(x) > \alpha\}$ is measurable for each n and countable union of measurable sets is measurable, so $\{x \in D : \sup f_n(x) > \alpha\}$ is measurable.
- $\sup f_n$ is measurable.

- (ii) The result follows from the observation that
- $\{x \in D : \inf_{n} f_n(x) < \alpha\} = \bigcup_{n=1} \{x \in D : f_n(x) < \alpha\}.$

Let $f:D\to\mathbb{R}$ be a measurable function and let $A=\{x\in D: f(x)=0\}$. If $\frac{1}{f}$ is defined to be α on A for some $\alpha\in\mathbb{R}$ then $\frac{1}{f}$ is measurable. If $\mu(A)=0$ then $\frac{1}{f}$ is measurable irrespective of what values we assign to it on A.

- \bullet D A is measurable
- $f: D-A \to \mathbb{R}$ is measurable
- $\frac{1}{f}$ is well defined on D-A and is also measurable.

For any real number c

$$\{x \in D : \frac{1}{f(x)} > c\} = \{x \in D - A : \frac{1}{f(x)} > c\} \text{ if } c \ge \alpha,$$
$$= \{x \in D - A : \frac{1}{f(x)} > c\} \cup A \text{ if } c < \alpha.$$

- $\frac{1}{f}$ is measurable.
- Define $g: D \to \mathbb{R}$ by g(x) = f(x) when $f(x) \neq 0$ • $g(x) = \beta$ for all $x \in A$ where $\beta \neq 0$.
- g = f almost everywhere and so g is measurable.
- Since $g \neq 0$ on D, so $\frac{1}{g}$ is also measurable.
- $\frac{1}{g} = \frac{1}{f}$ almost everywhere and so $\frac{1}{f}$ is measurable irrespective of the values we assign to $\frac{1}{f}$ on A.

