Functional Forms of Regression Models

DR. SANJIB MANDAL Department of Economics M.Phil/Ph.D Coursework

Beta Coefficients

"standardized coefficient" or "beta coefficient"

- Idea is to replace \boldsymbol{y} and each \boldsymbol{x} variable with a standardized version - i.e. subtract mean and divide by standard deviation
- Coefficient reflects standard deviation of y for a one standard deviation change in x

Functional Form

- OLS can be used for relationships that are not strictly linear in x and y by using nonlinear functions of x and y-will still be linear in the parameters
the natural \log of x, y or both
quadratic forms of \boldsymbol{x}
interactions of \boldsymbol{x} variables

Interpretation of Log Models

- Double-log model:
- If the model is $\ln (y)=\beta_{0}+\beta_{1} \ln (x)+u$
- β_{1} is the elasticity of \boldsymbol{y} with respect to \boldsymbol{x}

Interpretation of Log Models

- Semi-log models:
(1) If the model is $\ln (y)=\beta_{0}+\beta_{1} x+u$
- β_{1} is approximately the percentage change in y given a 1 unit change in x
- If $\mathbf{x}=$ time, $\beta_{1}=$ growth rate

Interpretation of Log Models

, Semi-log models:
(2) If the model is $\boldsymbol{y}=\beta_{0}+\beta_{1} \ln (x)+u$

- β_{1} is approximately the change in \boldsymbol{y} for a 100 percent change in x
- Used in Engel expenditure models:
- German statistician, Ernst Engel (1821-1896):
- "Total expenditure on food tends to increase in AP as total expenditure increases in GP"

Why use log models?

- They give a direct estimate of elasticity

For models with $\boldsymbol{y}>0$, the conditional distribution is often heteroskedastic or skewed, while $\ln (y)$ is much less so

- The distribution of $\ln (y)$ is more narrow, limiting the effect of outliers

Some Rules of Thumb

1. What types of variables are often used in log form?

- Dollar amounts that must be positive
- Very large variables, such as population
- What types of variables are often used in level form?
- Variables measured in years
- Variables that are a proportion or percent

Reciprocal model:

Phillips Curve
Percentage rate of change of money wages (y) and unemployment rate of the UK for 1861-1957

AW Phillips (1958) Economica Vol 15: 283-299

Logarithmic reciprocal model

$\ln y_{i}=\alpha+\beta \frac{1}{x_{i}}+u_{i}$

$$
y_{i}=e^{\alpha-\frac{\beta}{x_{i}}+u_{i}}
$$

$$
\frac{d y}{d x}=\frac{y \beta}{x^{2}}
$$

- Slope is positive for positive x

$$
\frac{d^{2} Y}{d X^{2}}=Y\left(\frac{\beta^{2}}{X^{4}}-\frac{2 \beta}{X^{3}}\right)
$$

Point of inflexion at $x=\boldsymbol{\beta} / \mathbf{2}$.

$\beta / 2$

Logarithmic reciprocal model

- Point of inflexion at $x=\beta / 2$.
- To the left of this point, slope \uparrow with x ; to the right, slope \downarrow.

Quadratic Models

, $\mathbf{y}=\beta_{0}+\beta_{1} \mathbf{x}+\beta_{2} x^{2}+\mathbf{u}$
' What's the slope here?

- Not β_{1} alone

$$
\frac{d y}{d x}=\beta_{1}+2 \beta_{2} x
$$

More on Quadratic Models

For $\beta_{1}<0$ and $\beta_{2}>0$, the turning point is at
$x^{*}=\mid \beta_{1} /\left(2 \beta_{2}\right)$,
which is the same as when
$\beta_{1}>0$ and $\beta_{2}<0$

Least-squares growth rate.
Least-squares growth rates are used wherever there is a sufficiently long time series to permit a reliable calculation.

The least-squares growth rate, r, is estimated by fitting a linear regression trend line to the logarithmic annual values of the variable in the relevant period.

The regression equation takes the form

$$
\ln y_{t}=\mathbf{a}+\mathbf{b} t
$$

The regression equation, $\ln y_{t}=a+b t$ may be taken as
(i) the logarithmic transformation of the exponential growth equation, $y(\mathrm{t})=y(0) \mathrm{e}^{r t}$,
with $a=\ln y(0)$ and $b=r$, the parameters to be estimated.

If \boldsymbol{b}^{*} is the least-squares estimate of \boldsymbol{b}, the same gives the average annual exponential growth rate, r,
and is multiplied by 100 for expression as a percentage.

The regression equation, $\ln y_{t}=a+b t$ may also be taken as
(ii) the logarithmic transformation of the compound growth equation, $y_{t}=y_{o}(1+r)^{t}$, with $a=\ln y_{o}$ and $b=\ln (1+r)$.

If \boldsymbol{b}^{*} is the least-squares estimate of \boldsymbol{b}, the average annual growth rate, r, is obtained as [exp($\left.\left.b^{*}\right)-1\right]$.

Remember Compound growth rate $=$ Exp(exponential growth rate) - 1 .

- Growth rate of real state domestic product (SDP) of Kerala for 1960-61 - 1999-2000:						
. regress lnsdp t						
source	ss	df	Ms		ber of	${ }^{40}$
$\underset{\substack{\text { Model } \\ \text { Residual }}}{ }$	6. 60999181811	11 38.60 60	${ }^{981811}$			86.49 0.000 0.978
Total	6.90116208	39 .176	52874		t ${ }_{\text {RSE }}$	0.08755
Insdp	coef.	std. Err.	t	$P>\|t\|$	[95\% conf	Interval]
$\widehat{c}_{\mathrm{t}}^{\mathrm{t}} \mathrm{~s}$	$\begin{aligned} & 0.0352155 \\ & .2357504 \end{aligned}$	00119911 .082119	${ }_{476.11}^{29.37}$	0.000 0.000	${ }_{13.337492}$	0.076431 13.4891
Growth rate : Coefficient of $t=\mathbf{0} .035215$= 3.52\%						

Growth rate of real state domestic product (SDP) of Kerala for 1960-61 1999-2000:
$\ln \mathrm{SDP}=13.432+0.0352155$ time
(476) (29.4)
$R^{2}=0.9578 \quad \mathrm{~F}(1,38)=862.4 ; \mathrm{n}=40$.

